变换器将振动传递给调幅器。调幅器放大超声波的振幅,并继续将其传送到焊接头。焊接头继续放大超声波的振幅,并与零件接触。
能量转移到装配的两个部分的焊接肋位置。由于焊接肋设计有尖点,能量集中在尖点,摩擦在压力下产生热量。这种热量是由两种摩擦产生的,一种是材料上下部分之间的表面摩擦,另一种是材料内部的分子间摩擦。正是摩擦产生的热量使上下部分在焊接位置熔化并连接在一起。
对于相同的材料,有三个因素决定了升温速率:频率、振幅和焊接压力。对于现有的设备,如15Khz、20Khz、30Khz或40Khz的机器,频率是固定的。因此,加热速率通常可以通过焊接压力来改变。一般来说,压力越高,升温速度越快。此外,还可以改变振幅,随着压力的变化,振幅越大,升温速率越快。
塑料件的超声波、焊接现象和结构设计要求的三个特征:
1) 高能;超声波能产生比声波多得多的能量,这是塑料件超声波焊接的基础,也是超声波焊接强度较高的根本原因;由于超声波能产生如此多的能量,它甚至可以焊接金属零件;另一方面,正是由于高能量,超声波可能会导致焊接界面;同时,它可能会损坏塑料零件的其他零件或已装配在塑料零件上的其他零件。
2) 方向性好,几乎是直线传输;由于超声波的波长很短,且衍射效应不明显,因此可以近似地认为超声波沿直线传播,即很容易获得具有良好传播方向性的定向和集中的超声波束。因此,这就要求超声波焊接头和焊接部件保持足够大的接触面积,以确保超声波能够传输到焊接接口。同时,如果在传播方向上有孔洞,超声波很难绕过孔洞传导能量,这也是超声波结构设计中需要注意的地方。
3) 衰减;虽然超声波的穿透能力很强,但超声波在物体中的传播始终存在衰减。传输距离越远,能量衰减越严重。此外,超声波能量在不同塑料中的衰减并不均匀。例如,在非晶态塑料中,如ABS,其能量衰减程度小,两个ABS塑料部件即使远程焊接也能保证焊接质量;在半结晶塑料中,如PA66,超声波能量衰减程度大,超声波传播距离短,难以保证远程焊接的质量。
根据计算机技术进行和验证,以满足焊接的要求,根据高精度数控车床进行生产加工。因此,工作人员在焊接时,要仔细检查焊头是否有损坏。焊机的焊头是焊接塑料制品的重要因素,精心的设计和测试步骤是焊头质量的保证,也是保证产品质量的关键。当产生超声波瞬时能量时,焊缝面积越大,能量分散越严重,超声波焊接效果越差,甚至无法进行超声波焊接,焊接效果会下降,无法满足焊接要求。根据超声波纵向传播原理,间距越大,能量损失越大,超声波焊接接头在6cm以内操作,焊缝适合30-80根焊丝,塑料制品壁厚大于2mm,以确保更好的实用效果,否则,有必要考虑拆除其他频率的超声波焊接机。